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Symmetry and CompositionÐ A Key to the
Structure of Physical Logic?

Michael Drieschner1
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From considerations about the structure of arbitrary physical theories, conditions
are derived for physical logic, mainly concerning symmetry and tensor products.
The quantum measurement is discussed as a chief example.

We ask for a justification of quantum logic or, to put it more generally,

of a logic of physics. We can learn a lot about this logic by asking: ª What

must a structure look like in order to be recognized as a physical theory?º

This is very near the Kantian search for a justification a priori that I have

dealt with elsewhere (Drieschner, 1992, 1993; see also Drieschner, 1979).

The fundamental definition of a physical theory, according to those considera-
tions, is: a set of rules for the derivation of empirically testable predictions
from present conditions.

1. PREDICTIONS

To begin with: If we want an empirical test, we have to have something

that can be tested: possible outcomes of an experiment, something that is

called ª observable,º ª test,º ª partition of unity,º ª n-fold alternatively.º It spans

a Boolean lattice, as in classical logic. We ask how Boolean lattices can be
connected among each other if they are not compatible, i.e., if they cannot

be embedded into one single Boolean lattice. In order to answer this question

we have to consider the special temporal structure of laws of nature

(Drieschner, 1992): A law of nature has the form: ª Under (specified) circum-

stances a certain measurement will have (specified) resultsº ; it is a general

rule for the derivation of specific predictions. It is necessary that a theory
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give predictions, or else there could not be an empirical test: It tests whether

a prediction comes true.

In many discussions this predictive structure of physics has not been
considered seriously enough. We shall see how important it is. It is clear that

the elements of several (physical) Boolean algebras always form a poset or

an orthoalgebra. From the predictive structure we can even conclude that

they form a lattice: Let a and b be incompatible elements such that they

cannot be true at the same time. But if they are predictions, the conjunction

ª a Ù bº has a good sense: We have to use the proposition ª a is necessaryº
or ª p(a) 5 1º [where p(a) is the probability of a] instead of ª a is true.º In

that case the conjunction means that a is necessary as well as b is necessary;

the experimenter may choose which one he wants to test. And the prediction
is, whichever proposition he tests, it will come out true. Possibly this predic-

tion will never really be made (namely if a Ù b 5 0 in the lattice), but still

it has formally a good meaning (Drieschner, 1993; see also Drieschner, 1979).
This gives us immediately the Jauch±Piron property for our lattice: p(a) 5
1, p(b) 5 1 Þ p(a Ù b) 5 1. This consequence, by the way, answers also

Holland’ s (1995) question concerning his axiom A2: Together with ª negationº

(below) our considerations give a physical justification for Holland’ s axiom.

2. PROBABILITY FUNCTION

We have already used a probability function in order to express the

necessity of prediction a. It can be shown that probability is the most general

empirically testable prediction we can think of (Drieschner, 1993; see also

Drieschner, 1979): If I cannot predict ª yesº or ª no,º I must at least be able
to predict the relative frequency of ª yesº and ª noº outcomes, i.e., to give a

probability. I cannot give here the details of the argument; the conclusion is

that every physical theory must give probabilities, possibly (in the ª classicalº ,

degenerate case) only probabilities 0 and 1. This means that probability

distributions (ª statesº ) are important for our reasoning about the structure of

the physical logic.
We conclude from the foregoing that every set of probability measures

on our lattice is strong: The order relation of the lattice is logical implication.

The elements of the lattice are predictions. Now ª prediction a implies predic-

tion bº means: ª If a is necessary, then b is necessary.º Thus we have the

equivalence

[a Þ b] Û [p(a) 5 1 Þ p(b) 5 1]

by the structure of L.
In a similar way we conclude from the structure of negation: Every

empirical test of a physical prediction tests whether this prediction is true or
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false. If it is false, its negative is true. Negation is represented by orthocomple-

mentation, as can be easily seen: The definition of orthocomplementation

gives exactly the rules that characterize logical negation. This means that
p(a) 5 0 implies p(a8) 5 1; every state is consistent.

3. SYMMETRY

The description of every physical object is such that we can distinguish
between the internal relations between its properties on the one hand, and

external criteria that distinguish such properties individually, on the other. It

is, e.g., an old ª toposº of philosophy (Leibniz, 1694) that nothing in our

experience would change if all objects were translated, say, 2 miles north:

In order to distinguish the location of an object from other locations we have

to refer to its relations to other objects. Ernst Mach (1933) emphasized this
necessity so far as to even postulate the relativity of rotation (ª Mach’s

principleº ).

More generally, any observable is defined only by a measuring instru-

ment and a measuring process outside the object that is measured. Thus the

internal structure of an object does not distinguish between (atomic) proper-

ties; it is invariant under transformations that leave the relations between its
properties intact.

We can argue for that symmetry in a still more general way: A law of

nature describes changes of objects that occur at any period of time in the

same way: The sun rises every morning, the Stern±Gerlach experiment works

the same way any time we make it. This implies that temporal development

is described by a group representation of R + (ª timeº ) in the automorphisms
of the ª logicº of the objectÐ in quantum mechanics by the one-parameter

unitary SchroÈ dinger representations exp(it*). Thus, consider a set of proper-

ties the same object can have at different times; this set has to admit the kind

of automorphism group mentioned above, i.e., it has to have that symmetry.

Apparently this postulate will exclude some of the counterexamples that
are usually given in the discussion about ª physicalº logic.

4. COUPLING OF SYSTEMS

It must be possible, in any physical theory, to describe two objects at

a time, i.e., to treat them as one object. This must be possible even if (or,
as long as) those objects are entirely independent.

This implies the structure of the tensor product: Since each one of the

objects can be described independently, their joint structure has to admit the

corresponding bimorphisms as well as the product rule of probability theory.
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We are considering a general physical theory, i.e., a theory that describes

the changes in time of arbitrary physical objects (a general ª mechanics,º like

quantum mechanics). The generality of that theory means that its ª logicº is
of a certain category, independently of the size of the objects described. Thus,

for its ª trueº logic we need only consider categories that are closed under

the formation of tensor products. By this argument, as far as I can see, from

the logics considered so far only the following remain:

1. Unital orthoalgebras (Foulis et al., 1992).
2. Difference posets that have a sufficient system of states (e.g., DvurecÆen-

skij, 1995).

3. Hilbert space lattices, as is well known.

It seems to be a nice program to investigate the combination of all the

conditions mentioned so far and see which structures comply with all of

them. It seems quite possible that the conditions of SoleÁ r’ s (1995) theorem
are met, such that only Hilbert space lattices remain; if not, it will be quite

interesting to name all structures that are possible under those conditions.

5. PROBABILISTIC INDEPENDENCE VERSUS
NONINFLUENCE

In probability theory we call two probability distributions p(ai), p(bj)

independent iff the product rule holds: p(ai Ù bj) 5 p(ai), p(bj), for all i, j.
Two physical systems A and B, on the other hand, are independent iff the

ª motionº (change of state) of A is the same whatever state B is in, and vice

versa. The two concepts of independence are not the same, although they
may be closely connected. Take, e.g., the description of the measuring process;

we distinguish three phases: In the first phase, before the measurement, object

and apparatus are physically independent, and the probability distributions

are independent as well; in the second phase, the measurement interaction

between the two takes place; and in the third phase, after this interaction,

the object and apparatus are physically independent again, but their probability
distributions are no longer independent: If the apparatus has property f i ,

then the probability must be 100% that the object has the corresponding

property w i.

Hence it is important, if we speak of independence, to be careful with

this distinction.

6. QUANTUM MEASUREMENT

The problem with quantum measurement is that its description contains

a contradiction in its very foundations: If we consider quantum mechanics
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as a fundamental physical theory, we must admit that the instrument is

described quantum mechanically, as well as the object. Let us first look at

the very simple example of an object with a two-dimensional ª logicº (Hilbert
space), admitting an observable Q with eigenstates w 1 and w 2.

We can discuss the structure of the process of measurement in the

framework of a rather general physical logic: An instrument that measures

Q admits three ª pointerº states: f 0 for the ª readyº state, f 1 and f 2 for the

states indicating object states w 1 or w 2, respectively. The instrument measures

Q; this means that, if the object is in eigenstate w 1 in the beginning, then the
interaction of the measurement leads to the final state w 1 3 f 1 in the tensor

product logic; if the object is in eigenstate w 2, the result of the measurement

interaction is w 2 3 f 2. There must be an automorphism U, according to the

generalized SchroÈ dinger equation, that does the corresponding transformation:

U ( w 1 3 f 0) 5 w 1 3 f 1

U ( w 2 3 f 0) 5 w 2 3 f 2

These two equations define the automorphism U completely.
Let the measured object be in an arbitrary atom (ª pure stateº ) w x of the

logic. The atom w x 3 f 0 of the tensor product space, as above, is transformed

by U into U ( w x 3 f 0), which is incompatible with both w 1 3 f 1 and w 2 3
f 2 if w x Þ w 1 and w x Þ w 2.

[In Hilbert space theory this means: The general initial pure state w x of
the measured object can be written as

w x 5 a ? w 1 1 b ? w 2

with complex coefficients a and b . The automorphism U (a unitary transfor-
mation) transforms it into

U ( w x 3 f 0) 5 a ? w 1 3 f 1 1 b ? w 2 3 f 2 (1)

which is again a pure state.]

But let us now look at the result of the measurement; here the contradic-

tion arises: The instrument will either show result 1 or result 2, being in the

final state f 1 or f 2, respectively. These states of the instrument indicate that

the object is in state w 1 or w 2, respectively (we assume, for simplicity, an

ideal measurement of the first kind). Consider, as above, the initial pure state
w x of the object, with probability p1 (p2) for finding result 1 (result 2), with

p1 1 p2 5 1. Now we use the tensor product for describing the compound

object after the measurement. Its description is w 1 3 f 1 with probability p1,

and w 2 3 f 2 with probability p2Ð which is a general formulation of ª mixture.º
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This description is apparently different from, even incompatible with, the

state U ( w x 3 f 0) described above (1).

[In Hilbert space, again, we have the well-known difference between

the corresponding density operators W and W 8 (where P w is the projector

onto w ):

The result of the automorphism U is [cf. (1)].

W 5 P( a ? w 1 3 f 1 1 b ? w 2 3 f 2)

The ª mixture,º on the other hand, is

W8 5 | a | 2 ? P( f 1 3 f 1) 1 | b | 2 ? P( w 2 3 f 2)

where W Þ W 8 if a , b . 0.]

This is the simplest possible formulation of the problem, but a long

discussion2 shows that nothing changes fundamentally if we go over to
observables with many possible outcomes, replace the pure states of the

object or apparatus with mixtures, or consider measurements of other kinds.

Our analysis shows that the problem persists even in the much more general

setting of quantum logic.

7. LINEARITY

Wigner as well as Busch et al. (1991, Section IV.4.2) conclude from
these considerations that the SchroÈ dinger equation ought to be replaced by

something nonlinear. But, as I have argued, there are rather strong arguments

for the claim that even the most general theory of physics has to describe

time translations as a one-parameter group of automorphisms of the quantum

logic. This implies the (generalized) SchroÈ dinger equation. And that leaves

no room for a nonlinear description of temporal development.
The solution I propose looks rather easy, but it touches on fundamental

questions: The two density operators W and W 8 can be made much alike in

a real measurement, even though they can never be exactly equal. It belongs

to the fundamental meaning of measurement that we separate the object from

the instrument. This is always an approximation, but that approximation lies
at the foundation of physics; so we just have to accept it (cf. Drieschner, 1979)!

2 See SuÈ ssmann (1958), Wigner (1963), and Busch et al. (1991). In this latter book a different
formulation of the inconsistency is given (cf. section III.6.2), but it leads to basically the
same problem.
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